// Copyright © 2017 The virtual-kubelet authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package node import ( "context" "encoding/json" "time" pkgerrors "github.com/pkg/errors" "github.com/virtual-kubelet/virtual-kubelet/log" "github.com/virtual-kubelet/virtual-kubelet/trace" coord "k8s.io/api/coordination/v1beta1" corev1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/errors" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/types" "k8s.io/apimachinery/pkg/util/strategicpatch" "k8s.io/apimachinery/pkg/util/wait" "k8s.io/client-go/kubernetes/typed/coordination/v1beta1" v1 "k8s.io/client-go/kubernetes/typed/core/v1" "k8s.io/client-go/util/retry" ) const ( // Annotation with the JSON-serialized last applied node conditions. Based on kube ctl apply. Used to calculate // the three-way patch virtualKubeletLastNodeAppliedNodeStatus = "virtual-kubelet.io/last-applied-node-status" virtualKubeletLastNodeAppliedObjectMeta = "virtual-kubelet.io/last-applied-object-meta" ) // NodeProvider is the interface used for registering a node and updating its // status in Kubernetes. // // Note: Implementers can choose to manage a node themselves, in which case // it is not needed to provide an implementation for this interface. type NodeProvider interface { //nolint:golint // Ping checks if the node is still active. // This is intended to be lightweight as it will be called periodically as a // heartbeat to keep the node marked as ready in Kubernetes. Ping(context.Context) error // NotifyNodeStatus is used to asynchronously monitor the node. // The passed in callback should be called any time there is a change to the // node's status. // This will generally trigger a call to the Kubernetes API server to update // the status. // // NotifyNodeStatus should not block callers. NotifyNodeStatus(ctx context.Context, cb func(*corev1.Node)) } // NewNodeController creates a new node controller. // This does not have any side-effects on the system or kubernetes. // // Use the node's `Run` method to register and run the loops to update the node // in Kubernetes. // // Note: When if there are multiple NodeControllerOpts which apply against the same // underlying options, the last NodeControllerOpt will win. func NewNodeController(p NodeProvider, node *corev1.Node, nodes v1.NodeInterface, opts ...NodeControllerOpt) (*NodeController, error) { n := &NodeController{ p: p, serverNode: node, nodes: nodes, chReady: make(chan struct{}), } for _, o := range opts { if err := o(n); err != nil { return nil, pkgerrors.Wrap(err, "error applying node option") } } if n.pingInterval == time.Duration(0) { n.pingInterval = DefaultPingInterval } if n.statusInterval == time.Duration(0) { n.statusInterval = DefaultStatusUpdateInterval } n.nodePingController = newNodePingController(n.p, n.pingInterval, n.pingTimeout) return n, nil } // NodeControllerOpt are the functional options used for configuring a node type NodeControllerOpt func(*NodeController) error // nolint: golint // WithNodeEnableLeaseV1Beta1 enables support for v1beta1 leases. // If client is nil, leases will not be enabled. // If baseLease is nil, a default base lease will be used. // // The lease will be updated after each successful node ping. To change the // lease update interval, you must set the node ping interval. // See WithNodePingInterval(). // // This also affects the frequency of node status updates: // - When leases are *not* enabled (or are disabled due to no support on the cluster) // the node status is updated at every ping interval. // - When node leases are enabled, node status updates are controlled by the // node status update interval option. // To set a custom node status update interval, see WithNodeStatusUpdateInterval(). func WithNodeEnableLeaseV1Beta1(client v1beta1.LeaseInterface, baseLease *coord.Lease) NodeControllerOpt { return func(n *NodeController) error { n.leases = client n.lease = baseLease return nil } } // WithNodePingTimeout limits the amount of time that the virtual kubelet will wait for the node provider to // respond to the ping callback. If it does not return within this time, it will be considered an error // condition func WithNodePingTimeout(timeout time.Duration) NodeControllerOpt { return func(n *NodeController) error { n.pingTimeout = &timeout return nil } } // WithNodePingInterval sets the interval between checking for node statuses via Ping() // If node leases are not supported (or not enabled), this is the frequency // with which the node status will be updated in Kubernetes. func WithNodePingInterval(d time.Duration) NodeControllerOpt { return func(n *NodeController) error { n.pingInterval = d return nil } } // WithNodeStatusUpdateInterval sets the interval for updating node status // This is only used when leases are supported and only for updating the actual // node status, not the node lease. // When node leases are not enabled (or are not supported on the cluster) this // has no affect and node status is updated on the "ping" interval. func WithNodeStatusUpdateInterval(d time.Duration) NodeControllerOpt { return func(n *NodeController) error { n.statusInterval = d return nil } } // WithNodeStatusUpdateErrorHandler adds an error handler for cases where there is an error // when updating the node status. // This allows the caller to have some control on how errors are dealt with when // updating a node's status. // // The error passed to the handler will be the error received from kubernetes // when updating node status. func WithNodeStatusUpdateErrorHandler(h ErrorHandler) NodeControllerOpt { return func(n *NodeController) error { n.nodeStatusUpdateErrorHandler = h return nil } } // ErrorHandler is a type of function used to allow callbacks for handling errors. // It is expected that if a nil error is returned that the error is handled and // progress can continue (or a retry is possible). type ErrorHandler func(context.Context, error) error // NodeController deals with creating and managing a node object in Kubernetes. // It can register a node with Kubernetes and periodically update its status. // NodeController manages a single node entity. type NodeController struct { // nolint: golint p NodeProvider // serverNode should only be written to on initialization, or as the result of node creation. serverNode *corev1.Node leases v1beta1.LeaseInterface nodes v1.NodeInterface disableLease bool pingInterval time.Duration statusInterval time.Duration lease *coord.Lease chStatusUpdate chan *corev1.Node nodeStatusUpdateErrorHandler ErrorHandler chReady chan struct{} nodePingController *nodePingController pingTimeout *time.Duration } // The default intervals used for lease and status updates. const ( DefaultPingInterval = 10 * time.Second DefaultStatusUpdateInterval = 1 * time.Minute ) // Run registers the node in kubernetes and starts loops for updating the node // status in Kubernetes. // // The node status must be updated periodically in Kubernetes to keep the node // active. Newer versions of Kubernetes support node leases, which are // essentially light weight pings. Older versions of Kubernetes require updating // the node status periodically. // // If Kubernetes supports node leases this will use leases with a much slower // node status update (because some things still expect the node to be updated // periodically), otherwise it will only use node status update with the configured // ping interval. func (n *NodeController) Run(ctx context.Context) error { n.chStatusUpdate = make(chan *corev1.Node, 1) n.p.NotifyNodeStatus(ctx, func(node *corev1.Node) { n.chStatusUpdate <- node }) providerNode := n.serverNode.DeepCopy() if err := n.ensureNode(ctx, providerNode); err != nil { return err } if n.leases == nil { n.disableLease = true return n.controlLoop(ctx, providerNode) } n.lease = newLease(ctx, n.lease, n.serverNode, n.pingInterval) l, err := ensureLease(ctx, n.leases, n.lease) if err != nil { if !errors.IsNotFound(err) { return pkgerrors.Wrap(err, "error creating node lease") } log.G(ctx).Info("Node leases not supported, falling back to only node status updates") n.disableLease = true } n.lease = l log.G(ctx).Debug("Created node lease") return n.controlLoop(ctx, providerNode) } func (n *NodeController) ensureNode(ctx context.Context, providerNode *corev1.Node) (err error) { ctx, span := trace.StartSpan(ctx, "node.ensureNode") defer span.End() defer func() { span.SetStatus(err) }() err = n.updateStatus(ctx, providerNode, true) if err == nil || !errors.IsNotFound(err) { return err } node, err := n.nodes.Create(ctx, n.serverNode, metav1.CreateOptions{}) if err != nil { return pkgerrors.Wrap(err, "error registering node with kubernetes") } n.serverNode = node // Bad things will happen if the node is deleted in k8s and recreated by someone else // we rely on this persisting providerNode.ObjectMeta.Name = node.Name providerNode.ObjectMeta.Namespace = node.Namespace providerNode.ObjectMeta.UID = node.UID return nil } // Ready returns a channel that gets closed when the node is fully up and // running. Note that if there is an error on startup this channel will never // be started. func (n *NodeController) Ready() <-chan struct{} { return n.chReady } func (n *NodeController) controlLoop(ctx context.Context, providerNode *corev1.Node) error { pingTimer := time.NewTimer(n.pingInterval) defer pingTimer.Stop() statusTimer := time.NewTimer(n.statusInterval) defer statusTimer.Stop() timerResetDuration := n.statusInterval if n.disableLease { // when resetting the timer after processing a status update, reset it to the ping interval // (since it will be the ping timer as serverNode.disableLease == true) timerResetDuration = n.pingInterval // hack to make sure this channel always blocks since we won't be using it if !statusTimer.Stop() { <-statusTimer.C } } close(n.chReady) group := &wait.Group{} group.StartWithContext(ctx, n.nodePingController.run) defer group.Wait() loop := func() bool { ctx, span := trace.StartSpan(ctx, "node.controlLoop.loop") defer span.End() select { case <-ctx.Done(): return true case updated := <-n.chStatusUpdate: var t *time.Timer if n.disableLease { t = pingTimer } else { t = statusTimer } log.G(ctx).Debug("Received node status update") // Performing a status update so stop/reset the status update timer in this // branch otherwise there could be an unnecessary status update. if !t.Stop() { <-t.C } providerNode.Status = updated.Status providerNode.ObjectMeta.Annotations = updated.Annotations providerNode.ObjectMeta.Labels = updated.Labels if err := n.updateStatus(ctx, providerNode, false); err != nil { log.G(ctx).WithError(err).Error("Error handling node status update") } t.Reset(timerResetDuration) case <-statusTimer.C: if err := n.updateStatus(ctx, providerNode, false); err != nil { log.G(ctx).WithError(err).Error("Error handling node status update") } statusTimer.Reset(n.statusInterval) case <-pingTimer.C: if err := n.handlePing(ctx, providerNode); err != nil { log.G(ctx).WithError(err).Error("Error while handling node ping") } else { log.G(ctx).Debug("Successful node ping") } pingTimer.Reset(n.pingInterval) } return false } for { shouldTerminate := loop() if shouldTerminate { return nil } } } func (n *NodeController) handlePing(ctx context.Context, providerNode *corev1.Node) (retErr error) { ctx, span := trace.StartSpan(ctx, "node.handlePing") defer span.End() defer func() { span.SetStatus(retErr) }() result, err := n.nodePingController.getResult(ctx) if err != nil { err = pkgerrors.Wrap(err, "error while fetching result of node ping") return err } if result.error != nil { err = pkgerrors.Wrap(err, "node ping returned error on ping") return err } if n.disableLease { return n.updateStatus(ctx, providerNode, false) } // TODO(Sargun): Pass down the result / timestamp so we can accurately track when the ping actually occurred return n.updateLease(ctx) } func (n *NodeController) updateLease(ctx context.Context) error { l, err := updateNodeLease(ctx, n.leases, newLease(ctx, n.lease, n.serverNode, n.pingInterval)) if err != nil { return err } n.lease = l return nil } func (n *NodeController) updateStatus(ctx context.Context, providerNode *corev1.Node, skipErrorCb bool) (err error) { ctx, span := trace.StartSpan(ctx, "node.updateStatus") defer span.End() defer func() { span.SetStatus(err) }() updateNodeStatusHeartbeat(providerNode) node, err := updateNodeStatus(ctx, n.nodes, providerNode) if err != nil { if skipErrorCb || n.nodeStatusUpdateErrorHandler == nil { return err } if err := n.nodeStatusUpdateErrorHandler(ctx, err); err != nil { return err } // This might have recreated the node, which may cause problems with our leases until a node update succeeds node, err = updateNodeStatus(ctx, n.nodes, providerNode) if err != nil { return err } } n.serverNode = node return nil } func ensureLease(ctx context.Context, leases v1beta1.LeaseInterface, lease *coord.Lease) (*coord.Lease, error) { l, err := leases.Create(ctx, lease, metav1.CreateOptions{}) if err != nil { switch { case errors.IsNotFound(err): log.G(ctx).WithError(err).Info("Node lease not supported") return nil, err case errors.IsAlreadyExists(err), errors.IsConflict(err): log.G(ctx).WithError(err).Warn("Error creating lease, deleting and recreating") if err := leases.Delete(ctx, lease.Name, metav1.DeleteOptions{}); err != nil && !errors.IsNotFound(err) { log.G(ctx).WithError(err).Error("could not delete old node lease") return nil, pkgerrors.Wrap(err, "old lease exists but could not delete it") } l, err = leases.Create(ctx, lease, metav1.CreateOptions{}) } } return l, err } // updateNodeLease updates the node lease. // // If this function returns an errors.IsNotFound(err) error, this likely means // that node leases are not supported, if this is the case, call updateNodeStatus // instead. func updateNodeLease(ctx context.Context, leases v1beta1.LeaseInterface, lease *coord.Lease) (*coord.Lease, error) { ctx, span := trace.StartSpan(ctx, "node.UpdateNodeLease") defer span.End() ctx = span.WithFields(ctx, log.Fields{ "lease.name": lease.Name, "lease.time": lease.Spec.RenewTime, }) if lease.Spec.LeaseDurationSeconds != nil { ctx = span.WithField(ctx, "lease.expiresSeconds", *lease.Spec.LeaseDurationSeconds) } l, err := leases.Update(ctx, lease, metav1.UpdateOptions{}) if err != nil { if errors.IsNotFound(err) { log.G(ctx).Debug("lease not found") l, err = ensureLease(ctx, leases, lease) } if err != nil { span.SetStatus(err) return nil, err } log.G(ctx).Debug("created new lease") } else { log.G(ctx).Debug("updated lease") } return l, nil } // just so we don't have to allocate this on every get request var emptyGetOptions = metav1.GetOptions{} func prepareThreewayPatchBytesForNodeStatus(nodeFromProvider, apiServerNode *corev1.Node) ([]byte, error) { // We use these two values to calculate a patch. We use a three-way patch in order to avoid // causing state regression server side. For example, let's consider the scenario: /* UML Source: @startuml participant VK participant K8s participant ExternalUpdater note right of VK: Updates internal node conditions to [A, B] VK->K8s: Patch Upsert [A, B] note left of K8s: Node conditions are [A, B] ExternalUpdater->K8s: Patch Upsert [C] note left of K8s: Node Conditions are [A, B, C] note right of VK: Updates internal node conditions to [A] VK->K8s: Patch: delete B, upsert A\nThis is where things go wrong,\nbecause the patch is written to replace all node conditions\nit overwrites (drops) [C] note left of K8s: Node Conditions are [A]\nNode condition C from ExternalUpdater is no longer present @enduml ,--. ,---. ,---------------. |VK| |K8s| |ExternalUpdater| `+-' `-+-' `-------+-------' | ,------------------------------------------!. | | | |Updates internal node conditions to [A, B]|_\ | | | `--------------------------------------------' | | | Patch Upsert [A, B] | | | -----------------------------------------------------------> | | | | | ,--------------------------!. | | | |Node conditions are [A, B]|_\| | | `----------------------------'| | | | Patch Upsert [C] | | | <------------------- | | | | ,-----------------------------!. | | | |Node Conditions are [A, B, C]|_\| | | `-------------------------------'| | | ,---------------------------------------!. | | | |Updates internal node conditions to [A]|_\ | | | `-----------------------------------------' | | | Patch: delete B, upsert A | | | This is where things go wrong, | | | because the patch is written to replace all node conditions| | | it overwrites (drops) [C] | | | -----------------------------------------------------------> | | | | ,----------------------------------------------------------!. | | |Node Conditions are [A] |_\| | |Node condition C from ExternalUpdater is no longer present || | `------------------------------------------------------------'+-. ,-------+-------. |VK| |K8s| |ExternalUpdater| `--' `---' `---------------' */ // In order to calculate that last patch to delete B, and upsert C, we need to know that C was added by // "someone else". So, we keep track of our last applied value, and our current value. We then generate // our patch based on the diff of these and *not* server side state. oldVKStatus, ok1 := apiServerNode.Annotations[virtualKubeletLastNodeAppliedNodeStatus] oldVKObjectMeta, ok2 := apiServerNode.Annotations[virtualKubeletLastNodeAppliedObjectMeta] oldNode := corev1.Node{} // Check if there were no labels, which means someone else probably created the node, or this is an upgrade. Either way, we will consider // ourselves as never having written the node object before, so oldNode will be left empty. We will overwrite values if // our new node conditions / status / objectmeta have them if ok1 && ok2 { err := json.Unmarshal([]byte(oldVKObjectMeta), &oldNode.ObjectMeta) if err != nil { return nil, pkgerrors.Wrapf(err, "Cannot unmarshal old node object metadata (key: %q): %q", virtualKubeletLastNodeAppliedObjectMeta, oldVKObjectMeta) } err = json.Unmarshal([]byte(oldVKStatus), &oldNode.Status) if err != nil { return nil, pkgerrors.Wrapf(err, "Cannot unmarshal old node status (key: %q): %q", virtualKubeletLastNodeAppliedNodeStatus, oldVKStatus) } } // newNode is the representation of the node the provider "wants" newNode := corev1.Node{} newNode.ObjectMeta = simplestObjectMetadata(&apiServerNode.ObjectMeta, &nodeFromProvider.ObjectMeta) nodeFromProvider.Status.DeepCopyInto(&newNode.Status) // virtualKubeletLastNodeAppliedObjectMeta must always be set before virtualKubeletLastNodeAppliedNodeStatus, // otherwise we capture virtualKubeletLastNodeAppliedNodeStatus in virtualKubeletLastNodeAppliedObjectMeta, // which is wrong virtualKubeletLastNodeAppliedObjectMetaBytes, err := json.Marshal(newNode.ObjectMeta) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot marshal object meta from provider") } newNode.Annotations[virtualKubeletLastNodeAppliedObjectMeta] = string(virtualKubeletLastNodeAppliedObjectMetaBytes) virtualKubeletLastNodeAppliedNodeStatusBytes, err := json.Marshal(newNode.Status) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot marshal node status from provider") } newNode.Annotations[virtualKubeletLastNodeAppliedNodeStatus] = string(virtualKubeletLastNodeAppliedNodeStatusBytes) // Generate three way patch from oldNode -> newNode, without deleting the changes in api server // Should we use the Kubernetes serialization / deserialization libraries here? oldNodeBytes, err := json.Marshal(oldNode) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot marshal old node bytes") } newNodeBytes, err := json.Marshal(newNode) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot marshal new node bytes") } apiServerNodeBytes, err := json.Marshal(apiServerNode) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot marshal api server node") } schema, err := strategicpatch.NewPatchMetaFromStruct(&corev1.Node{}) if err != nil { return nil, pkgerrors.Wrap(err, "Cannot get patch schema from node") } return strategicpatch.CreateThreeWayMergePatch(oldNodeBytes, newNodeBytes, apiServerNodeBytes, schema, true) } // updateNodeStatus triggers an update to the node status in Kubernetes. // It first fetches the current node details and then sets the status according // to the passed in node object. // // If you use this function, it is up to you to synchronize this with other operations. // This reduces the time to second-level precision. func updateNodeStatus(ctx context.Context, nodes v1.NodeInterface, nodeFromProvider *corev1.Node) (_ *corev1.Node, retErr error) { ctx, span := trace.StartSpan(ctx, "UpdateNodeStatus") defer func() { span.End() span.SetStatus(retErr) }() var updatedNode *corev1.Node err := retry.RetryOnConflict(retry.DefaultRetry, func() error { apiServerNode, err := nodes.Get(ctx, nodeFromProvider.Name, emptyGetOptions) if err != nil { return err } ctx = addNodeAttributes(ctx, span, apiServerNode) log.G(ctx).Debug("got node from api server") patchBytes, err := prepareThreewayPatchBytesForNodeStatus(nodeFromProvider, apiServerNode) if err != nil { return pkgerrors.Wrap(err, "Cannot generate patch") } log.G(ctx).WithError(err).WithField("patch", string(patchBytes)).Debug("Generated three way patch") updatedNode, err = nodes.Patch(ctx, nodeFromProvider.Name, types.StrategicMergePatchType, patchBytes, metav1.PatchOptions{}, "status") if err != nil { // We cannot wrap this error because the kubernetes error module doesn't understand wrapping log.G(ctx).WithField("patch", string(patchBytes)).WithError(err).Warn("Failed to patch node status") return err } return nil }) if err != nil { return nil, err } log.G(ctx).WithField("node.resourceVersion", updatedNode.ResourceVersion). WithField("node.Status.Conditions", updatedNode.Status.Conditions). Debug("updated node status in api server") return updatedNode, nil } // This will return a new lease. It will either update base lease (and the set the renewal time appropriately), or create a brand new lease func newLease(ctx context.Context, base *coord.Lease, serverNode *corev1.Node, leaseRenewalInterval time.Duration) *coord.Lease { var lease *coord.Lease if base == nil { lease = &coord.Lease{} } else { lease = base.DeepCopy() } lease.Spec.RenewTime = &metav1.MicroTime{Time: time.Now()} if lease.Spec.LeaseDurationSeconds == nil { // This is 25 due to historical reasons. It was supposed to be * 5, but...reasons d := int32(leaseRenewalInterval.Seconds()) * 25 lease.Spec.LeaseDurationSeconds = &d } if lease.Name == "" { lease.Name = serverNode.Name } if lease.Spec.HolderIdentity == nil { // Let's do a copy here name := serverNode.Name lease.Spec.HolderIdentity = &name } // Copied and pasted from: https://github.com/kubernetes/kubernetes/blob/442a69c3bdf6fe8e525b05887e57d89db1e2f3a5/pkg/kubelet/nodelease/controller.go#L213-L216 // Setting owner reference needs node's UID. Note that it is different from // kubelet.nodeRef.UID. When lease is initially created, it is possible that // the connection between master and node is not ready yet. So try to set // owner reference every time when renewing the lease, until successful. // // We have a special case to deal with in the node may be deleted and // come back with a different UID. In this case the lease object should // be deleted due to a owner reference cascading deletion, and when we renew // lease again updateNodeLease will call ensureLease, and establish a new // lease with the right node ID if l := len(lease.OwnerReferences); l == 0 { lease.OwnerReferences = []metav1.OwnerReference{ { APIVersion: corev1.SchemeGroupVersion.WithKind("Node").Version, Kind: corev1.SchemeGroupVersion.WithKind("Node").Kind, Name: serverNode.Name, UID: serverNode.UID, }, } } else if l > 0 { var foundAnyNode bool for _, ref := range lease.OwnerReferences { if ref.APIVersion == corev1.SchemeGroupVersion.WithKind("Node").Version && ref.Kind == corev1.SchemeGroupVersion.WithKind("Node").Kind { foundAnyNode = true if serverNode.UID == ref.UID && serverNode.Name == ref.Name { return lease } log.G(ctx).WithFields(map[string]interface{}{ "node.UID": serverNode.UID, "ref.UID": ref.UID, "node.Name": serverNode.Name, "ref.Name": ref.Name, }).Warn("Found that lease had node in owner references that is not this node") } } if !foundAnyNode { log.G(ctx).Warn("Found that lease had owner references, but no nodes in owner references") } } return lease } func updateNodeStatusHeartbeat(n *corev1.Node) { now := metav1.NewTime(time.Now()) for i := range n.Status.Conditions { n.Status.Conditions[i].LastHeartbeatTime = now } } // NaiveNodeProvider is a basic node provider that only uses the passed in context // on `Ping` to determine if the node is healthy. type NaiveNodeProvider struct{} // Ping just implements the NodeProvider interface. // It returns the error from the passed in context only. func (NaiveNodeProvider) Ping(ctx context.Context) error { return ctx.Err() } // NotifyNodeStatus implements the NodeProvider interface. // // This NaiveNodeProvider does not support updating node status and so this // function is a no-op. func (n NaiveNodeProvider) NotifyNodeStatus(_ context.Context, _ func(*corev1.Node)) { } // NaiveNodeProviderV2 is like NaiveNodeProvider except it supports accepting node status updates. // It must be used with as a pointer and must be created with `NewNaiveNodeProvider` type NaiveNodeProviderV2 struct { notify func(*corev1.Node) updateReady chan struct{} } // Ping just implements the NodeProvider interface. // It returns the error from the passed in context only. func (*NaiveNodeProviderV2) Ping(ctx context.Context) error { return ctx.Err() } // NotifyNodeStatus implements the NodeProvider interface. // // NaiveNodeProvider does not support updating node status unless created with `NewNaiveNodeProvider` // Otherwise this is a no-op func (n *NaiveNodeProviderV2) NotifyNodeStatus(_ context.Context, f func(*corev1.Node)) { n.notify = f // This is a little sloppy and assumes `NotifyNodeStatus` is only called once, which is indeed currently true. // The reason a channel is preferred here is so we can use a context in `UpdateStatus` to cancel waiting for this. close(n.updateReady) } // UpdateStatus sends a node status update to the node controller func (n *NaiveNodeProviderV2) UpdateStatus(ctx context.Context, node *corev1.Node) error { select { case <-ctx.Done(): return ctx.Err() case <-n.updateReady: } n.notify(node) return nil } // NewNaiveNodeProvider creates a new NaiveNodeProviderV2 // You must use this to create a NaiveNodeProviderV2 if you want to be able to send node status updates to the node // controller. func NewNaiveNodeProvider() *NaiveNodeProviderV2 { return &NaiveNodeProviderV2{ updateReady: make(chan struct{}), } } type taintsStringer []corev1.Taint func (t taintsStringer) String() string { var s string for _, taint := range t { if s == "" { s = taint.Key + "=" + taint.Value + ":" + string(taint.Effect) } else { s += ", " + taint.Key + "=" + taint.Value + ":" + string(taint.Effect) } } return s } func addNodeAttributes(ctx context.Context, span trace.Span, n *corev1.Node) context.Context { return span.WithFields(ctx, log.Fields{ "node.UID": string(n.UID), "node.name": n.Name, "node.cluster": n.ClusterName, "node.taints": taintsStringer(n.Spec.Taints), }) } // Provides the simplest object metadata to match the previous object. Name, namespace, UID. It copies labels and // annotations from the second object if defined. It exempts the patch metadata func simplestObjectMetadata(baseObjectMeta, objectMetaWithLabelsAndAnnotations *metav1.ObjectMeta) metav1.ObjectMeta { ret := metav1.ObjectMeta{ Namespace: baseObjectMeta.Namespace, Name: baseObjectMeta.Name, UID: baseObjectMeta.UID, Annotations: make(map[string]string), } if objectMetaWithLabelsAndAnnotations != nil { if objectMetaWithLabelsAndAnnotations.Labels != nil { ret.Labels = objectMetaWithLabelsAndAnnotations.Labels } else { ret.Labels = make(map[string]string) } if objectMetaWithLabelsAndAnnotations.Annotations != nil { // We want to copy over all annotations except the special embedded ones. for key := range objectMetaWithLabelsAndAnnotations.Annotations { if key == virtualKubeletLastNodeAppliedNodeStatus || key == virtualKubeletLastNodeAppliedObjectMeta { continue } ret.Annotations[key] = objectMetaWithLabelsAndAnnotations.Annotations[key] } } } return ret }