Files
virtual-kubelet/node/node.go
Sargun Dhillon d390dfce43 Move node pinging to its own goroutine
This moves the job of pinging the node provider into its own
goroutine. If it takes a long time, it shouldn't slow down
leases, and vice-versa.

It also adds timeouts for node pings. One of the problems
is that we don't know how long a node ping will take --
there could be a bunch of network calls underneath us.

The point of the lease is to say whether or not the
Kubelet is unreachable, not whether or not the node
pings are "passing".

Signed-off-by: Sargun Dhillon <sargun@sargun.me>
2020-08-03 10:57:37 -07:00

777 lines
28 KiB
Go

// Copyright © 2017 The virtual-kubelet authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package node
import (
"context"
"encoding/json"
"time"
pkgerrors "github.com/pkg/errors"
"github.com/virtual-kubelet/virtual-kubelet/log"
"github.com/virtual-kubelet/virtual-kubelet/trace"
coord "k8s.io/api/coordination/v1beta1"
corev1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/types"
"k8s.io/apimachinery/pkg/util/strategicpatch"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/kubernetes/typed/coordination/v1beta1"
v1 "k8s.io/client-go/kubernetes/typed/core/v1"
"k8s.io/client-go/util/retry"
)
const (
// Annotation with the JSON-serialized last applied node conditions. Based on kube ctl apply. Used to calculate
// the three-way patch
virtualKubeletLastNodeAppliedNodeStatus = "virtual-kubelet.io/last-applied-node-status"
virtualKubeletLastNodeAppliedObjectMeta = "virtual-kubelet.io/last-applied-object-meta"
)
// NodeProvider is the interface used for registering a node and updating its
// status in Kubernetes.
//
// Note: Implementers can choose to manage a node themselves, in which case
// it is not needed to provide an implementation for this interface.
type NodeProvider interface { //nolint:golint
// Ping checks if the node is still active.
// This is intended to be lightweight as it will be called periodically as a
// heartbeat to keep the node marked as ready in Kubernetes.
Ping(context.Context) error
// NotifyNodeStatus is used to asynchronously monitor the node.
// The passed in callback should be called any time there is a change to the
// node's status.
// This will generally trigger a call to the Kubernetes API server to update
// the status.
//
// NotifyNodeStatus should not block callers.
NotifyNodeStatus(ctx context.Context, cb func(*corev1.Node))
}
// NewNodeController creates a new node controller.
// This does not have any side-effects on the system or kubernetes.
//
// Use the node's `Run` method to register and run the loops to update the node
// in Kubernetes.
//
// Note: When if there are multiple NodeControllerOpts which apply against the same
// underlying options, the last NodeControllerOpt will win.
func NewNodeController(p NodeProvider, node *corev1.Node, nodes v1.NodeInterface, opts ...NodeControllerOpt) (*NodeController, error) {
n := &NodeController{
p: p,
n: node,
nodes: nodes,
chReady: make(chan struct{}),
}
for _, o := range opts {
if err := o(n); err != nil {
return nil, pkgerrors.Wrap(err, "error applying node option")
}
}
n.nodePingController = newNodePingController(n.p, n.pingInterval, n.pingTimeout)
return n, nil
}
// NodeControllerOpt are the functional options used for configuring a node
type NodeControllerOpt func(*NodeController) error // nolint: golint
// WithNodeEnableLeaseV1Beta1 enables support for v1beta1 leases.
// If client is nil, leases will not be enabled.
// If baseLease is nil, a default base lease will be used.
//
// The lease will be updated after each successful node ping. To change the
// lease update interval, you must set the node ping interval.
// See WithNodePingInterval().
//
// This also affects the frequency of node status updates:
// - When leases are *not* enabled (or are disabled due to no support on the cluster)
// the node status is updated at every ping interval.
// - When node leases are enabled, node status updates are controlled by the
// node status update interval option.
// To set a custom node status update interval, see WithNodeStatusUpdateInterval().
func WithNodeEnableLeaseV1Beta1(client v1beta1.LeaseInterface, baseLease *coord.Lease) NodeControllerOpt {
return func(n *NodeController) error {
n.leases = client
n.lease = baseLease
return nil
}
}
// WithNodePingTimeout limits the amount of time that the virtual kubelet will wait for the node provider to
// respond to the ping callback. If it does not return within this time, it will be considered an error
// condition
func WithNodePingTimeout(timeout time.Duration) NodeControllerOpt {
return func(n *NodeController) error {
n.pingTimeout = &timeout
return nil
}
}
// WithNodePingInterval sets the interval between checking for node statuses via Ping()
// If node leases are not supported (or not enabled), this is the frequency
// with which the node status will be updated in Kubernetes.
func WithNodePingInterval(d time.Duration) NodeControllerOpt {
return func(n *NodeController) error {
n.pingInterval = d
return nil
}
}
// WithNodeStatusUpdateInterval sets the interval for updating node status
// This is only used when leases are supported and only for updating the actual
// node status, not the node lease.
// When node leases are not enabled (or are not supported on the cluster) this
// has no affect and node status is updated on the "ping" interval.
func WithNodeStatusUpdateInterval(d time.Duration) NodeControllerOpt {
return func(n *NodeController) error {
n.statusInterval = d
return nil
}
}
// WithNodeStatusUpdateErrorHandler adds an error handler for cases where there is an error
// when updating the node status.
// This allows the caller to have some control on how errors are dealt with when
// updating a node's status.
//
// The error passed to the handler will be the error received from kubernetes
// when updating node status.
func WithNodeStatusUpdateErrorHandler(h ErrorHandler) NodeControllerOpt {
return func(n *NodeController) error {
n.nodeStatusUpdateErrorHandler = h
return nil
}
}
// ErrorHandler is a type of function used to allow callbacks for handling errors.
// It is expected that if a nil error is returned that the error is handled and
// progress can continue (or a retry is possible).
type ErrorHandler func(context.Context, error) error
// NodeController deals with creating and managing a node object in Kubernetes.
// It can register a node with Kubernetes and periodically update its status.
// NodeController manages a single node entity.
type NodeController struct { // nolint: golint
p NodeProvider
n *corev1.Node
leases v1beta1.LeaseInterface
nodes v1.NodeInterface
disableLease bool
pingInterval time.Duration
statusInterval time.Duration
lease *coord.Lease
chStatusUpdate chan *corev1.Node
nodeStatusUpdateErrorHandler ErrorHandler
chReady chan struct{}
nodePingController *nodePingController
pingTimeout *time.Duration
}
// The default intervals used for lease and status updates.
const (
DefaultPingInterval = 10 * time.Second
DefaultStatusUpdateInterval = 1 * time.Minute
)
// Run registers the node in kubernetes and starts loops for updating the node
// status in Kubernetes.
//
// The node status must be updated periodically in Kubernetes to keep the node
// active. Newer versions of Kubernetes support node leases, which are
// essentially light weight pings. Older versions of Kubernetes require updating
// the node status periodically.
//
// If Kubernetes supports node leases this will use leases with a much slower
// node status update (because some things still expect the node to be updated
// periodically), otherwise it will only use node status update with the configured
// ping interval.
func (n *NodeController) Run(ctx context.Context) error {
if n.pingInterval == time.Duration(0) {
n.pingInterval = DefaultPingInterval
}
if n.statusInterval == time.Duration(0) {
n.statusInterval = DefaultStatusUpdateInterval
}
n.chStatusUpdate = make(chan *corev1.Node, 1)
n.p.NotifyNodeStatus(ctx, func(node *corev1.Node) {
n.chStatusUpdate <- node
})
if err := n.ensureNode(ctx); err != nil {
return err
}
if n.leases == nil {
n.disableLease = true
return n.controlLoop(ctx)
}
n.lease = newLease(ctx, n.lease, n.n, n.pingInterval)
l, err := ensureLease(ctx, n.leases, n.lease)
if err != nil {
if !errors.IsNotFound(err) {
return pkgerrors.Wrap(err, "error creating node lease")
}
log.G(ctx).Info("Node leases not supported, falling back to only node status updates")
n.disableLease = true
}
n.lease = l
log.G(ctx).Debug("Created node lease")
return n.controlLoop(ctx)
}
func (n *NodeController) ensureNode(ctx context.Context) (err error) {
ctx, span := trace.StartSpan(ctx, "node.ensureNode")
defer span.End()
defer func() {
span.SetStatus(err)
}()
err = n.updateStatus(ctx, true)
if err == nil || !errors.IsNotFound(err) {
return err
}
node, err := n.nodes.Create(ctx, n.n, metav1.CreateOptions{})
if err != nil {
return pkgerrors.Wrap(err, "error registering node with kubernetes")
}
n.n = node
return nil
}
// Ready returns a channel that gets closed when the node is fully up and
// running. Note that if there is an error on startup this channel will never
// be started.
func (n *NodeController) Ready() <-chan struct{} {
return n.chReady
}
func (n *NodeController) controlLoop(ctx context.Context) error {
pingTimer := time.NewTimer(n.pingInterval)
defer pingTimer.Stop()
statusTimer := time.NewTimer(n.statusInterval)
defer statusTimer.Stop()
timerResetDuration := n.statusInterval
if n.disableLease {
// when resetting the timer after processing a status update, reset it to the ping interval
// (since it will be the ping timer as n.disableLease == true)
timerResetDuration = n.pingInterval
// hack to make sure this channel always blocks since we won't be using it
if !statusTimer.Stop() {
<-statusTimer.C
}
}
close(n.chReady)
group := &wait.Group{}
group.StartWithContext(ctx, n.nodePingController.run)
defer group.Wait()
loop := func() bool {
ctx, span := trace.StartSpan(ctx, "node.controlLoop.loop")
defer span.End()
select {
case <-ctx.Done():
return true
case updated := <-n.chStatusUpdate:
var t *time.Timer
if n.disableLease {
t = pingTimer
} else {
t = statusTimer
}
log.G(ctx).Debug("Received node status update")
// Performing a status update so stop/reset the status update timer in this
// branch otherwise there could be an unnecessary status update.
if !t.Stop() {
<-t.C
}
n.n.Status = updated.Status
n.n.ObjectMeta = metav1.ObjectMeta{
Annotations: updated.Annotations,
Labels: updated.Labels,
Name: n.n.ObjectMeta.Name,
Namespace: n.n.ObjectMeta.Namespace,
UID: n.n.ObjectMeta.UID,
}
if err := n.updateStatus(ctx, false); err != nil {
log.G(ctx).WithError(err).Error("Error handling node status update")
}
t.Reset(timerResetDuration)
case <-statusTimer.C:
if err := n.updateStatus(ctx, false); err != nil {
log.G(ctx).WithError(err).Error("Error handling node status update")
}
statusTimer.Reset(n.statusInterval)
case <-pingTimer.C:
if err := n.handlePing(ctx); err != nil {
log.G(ctx).WithError(err).Error("Error while handling node ping")
} else {
log.G(ctx).Debug("Successful node ping")
}
pingTimer.Reset(n.pingInterval)
}
return false
}
for {
shouldTerminate := loop()
if shouldTerminate {
return nil
}
}
}
func (n *NodeController) handlePing(ctx context.Context) (retErr error) {
ctx, span := trace.StartSpan(ctx, "node.handlePing")
defer span.End()
defer func() {
span.SetStatus(retErr)
}()
result, err := n.nodePingController.getResult(ctx)
if err != nil {
err = pkgerrors.Wrap(err, "error while fetching result of node ping")
return err
}
if result.error != nil {
err = pkgerrors.Wrap(err, "node ping returned error on ping")
return err
}
if n.disableLease {
return n.updateStatus(ctx, false)
}
// TODO(Sargun): Pass down the result / timestamp so we can accurately track when the ping actually occurred
return n.updateLease(ctx)
}
func (n *NodeController) updateLease(ctx context.Context) error {
l, err := updateNodeLease(ctx, n.leases, newLease(ctx, n.lease, n.n, n.pingInterval))
if err != nil {
return err
}
n.lease = l
return nil
}
func (n *NodeController) updateStatus(ctx context.Context, skipErrorCb bool) (err error) {
ctx, span := trace.StartSpan(ctx, "node.updateStatus")
defer span.End()
defer func() {
span.SetStatus(err)
}()
updateNodeStatusHeartbeat(n.n)
node, err := updateNodeStatus(ctx, n.nodes, n.n)
if err != nil {
if skipErrorCb || n.nodeStatusUpdateErrorHandler == nil {
return err
}
if err := n.nodeStatusUpdateErrorHandler(ctx, err); err != nil {
return err
}
node, err = updateNodeStatus(ctx, n.nodes, n.n)
if err != nil {
return err
}
}
n.n = node
return nil
}
func ensureLease(ctx context.Context, leases v1beta1.LeaseInterface, lease *coord.Lease) (*coord.Lease, error) {
l, err := leases.Create(ctx, lease, metav1.CreateOptions{})
if err != nil {
switch {
case errors.IsNotFound(err):
log.G(ctx).WithError(err).Info("Node lease not supported")
return nil, err
case errors.IsAlreadyExists(err):
if err := leases.Delete(ctx, lease.Name, metav1.DeleteOptions{}); err != nil && !errors.IsNotFound(err) {
log.G(ctx).WithError(err).Error("could not delete old node lease")
return nil, pkgerrors.Wrap(err, "old lease exists but could not delete it")
}
l, err = leases.Create(ctx, lease, metav1.CreateOptions{})
}
}
return l, err
}
// updateNodeLease updates the node lease.
//
// If this function returns an errors.IsNotFound(err) error, this likely means
// that node leases are not supported, if this is the case, call updateNodeStatus
// instead.
func updateNodeLease(ctx context.Context, leases v1beta1.LeaseInterface, lease *coord.Lease) (*coord.Lease, error) {
ctx, span := trace.StartSpan(ctx, "node.UpdateNodeLease")
defer span.End()
ctx = span.WithFields(ctx, log.Fields{
"lease.name": lease.Name,
"lease.time": lease.Spec.RenewTime,
})
if lease.Spec.LeaseDurationSeconds != nil {
ctx = span.WithField(ctx, "lease.expiresSeconds", *lease.Spec.LeaseDurationSeconds)
}
l, err := leases.Update(ctx, lease, metav1.UpdateOptions{})
if err != nil {
if errors.IsNotFound(err) {
log.G(ctx).Debug("lease not found")
l, err = ensureLease(ctx, leases, lease)
}
if err != nil {
span.SetStatus(err)
return nil, err
}
log.G(ctx).Debug("created new lease")
} else {
log.G(ctx).Debug("updated lease")
}
return l, nil
}
// just so we don't have to allocate this on every get request
var emptyGetOptions = metav1.GetOptions{}
func prepareThreewayPatchBytesForNodeStatus(nodeFromProvider, apiServerNode *corev1.Node) ([]byte, error) {
// We use these two values to calculate a patch. We use a three-way patch in order to avoid
// causing state regression server side. For example, let's consider the scenario:
/*
UML Source:
@startuml
participant VK
participant K8s
participant ExternalUpdater
note right of VK: Updates internal node conditions to [A, B]
VK->K8s: Patch Upsert [A, B]
note left of K8s: Node conditions are [A, B]
ExternalUpdater->K8s: Patch Upsert [C]
note left of K8s: Node Conditions are [A, B, C]
note right of VK: Updates internal node conditions to [A]
VK->K8s: Patch: delete B, upsert A\nThis is where things go wrong,\nbecause the patch is written to replace all node conditions\nit overwrites (drops) [C]
note left of K8s: Node Conditions are [A]\nNode condition C from ExternalUpdater is no longer present
@enduml
,--. ,---. ,---------------.
|VK| |K8s| |ExternalUpdater|
`+-' `-+-' `-------+-------'
| ,------------------------------------------!. | |
| |Updates internal node conditions to [A, B]|_\ | |
| `--------------------------------------------' | |
| Patch Upsert [A, B] | |
| -----------------------------------------------------------> |
| | |
| ,--------------------------!. | |
| |Node conditions are [A, B]|_\| |
| `----------------------------'| |
| | Patch Upsert [C] |
| | <-------------------
| | |
| ,-----------------------------!. | |
| |Node Conditions are [A, B, C]|_\| |
| `-------------------------------'| |
| ,---------------------------------------!. | |
| |Updates internal node conditions to [A]|_\ | |
| `-----------------------------------------' | |
| Patch: delete B, upsert A | |
| This is where things go wrong, | |
| because the patch is written to replace all node conditions| |
| it overwrites (drops) [C] | |
| -----------------------------------------------------------> |
| | |
,----------------------------------------------------------!. | |
|Node Conditions are [A] |_\| |
|Node condition C from ExternalUpdater is no longer present || |
`------------------------------------------------------------'+-. ,-------+-------.
|VK| |K8s| |ExternalUpdater|
`--' `---' `---------------'
*/
// In order to calculate that last patch to delete B, and upsert C, we need to know that C was added by
// "someone else". So, we keep track of our last applied value, and our current value. We then generate
// our patch based on the diff of these and *not* server side state.
oldVKStatus, ok1 := apiServerNode.Annotations[virtualKubeletLastNodeAppliedNodeStatus]
oldVKObjectMeta, ok2 := apiServerNode.Annotations[virtualKubeletLastNodeAppliedObjectMeta]
oldNode := corev1.Node{}
// Check if there were no labels, which means someone else probably created the node, or this is an upgrade. Either way, we will consider
// ourselves as never having written the node object before, so oldNode will be left empty. We will overwrite values if
// our new node conditions / status / objectmeta have them
if ok1 && ok2 {
err := json.Unmarshal([]byte(oldVKObjectMeta), &oldNode.ObjectMeta)
if err != nil {
return nil, pkgerrors.Wrapf(err, "Cannot unmarshal old node object metadata (key: %q): %q", virtualKubeletLastNodeAppliedObjectMeta, oldVKObjectMeta)
}
err = json.Unmarshal([]byte(oldVKStatus), &oldNode.Status)
if err != nil {
return nil, pkgerrors.Wrapf(err, "Cannot unmarshal old node status (key: %q): %q", virtualKubeletLastNodeAppliedNodeStatus, oldVKStatus)
}
}
// newNode is the representation of the node the provider "wants"
newNode := corev1.Node{}
newNode.ObjectMeta = simplestObjectMetadata(&apiServerNode.ObjectMeta, &nodeFromProvider.ObjectMeta)
nodeFromProvider.Status.DeepCopyInto(&newNode.Status)
// virtualKubeletLastNodeAppliedObjectMeta must always be set before virtualKubeletLastNodeAppliedNodeStatus,
// otherwise we capture virtualKubeletLastNodeAppliedNodeStatus in virtualKubeletLastNodeAppliedObjectMeta,
// which is wrong
virtualKubeletLastNodeAppliedObjectMetaBytes, err := json.Marshal(newNode.ObjectMeta)
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot marshal object meta from provider")
}
newNode.Annotations[virtualKubeletLastNodeAppliedObjectMeta] = string(virtualKubeletLastNodeAppliedObjectMetaBytes)
virtualKubeletLastNodeAppliedNodeStatusBytes, err := json.Marshal(newNode.Status)
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot marshal node status from provider")
}
newNode.Annotations[virtualKubeletLastNodeAppliedNodeStatus] = string(virtualKubeletLastNodeAppliedNodeStatusBytes)
// Generate three way patch from oldNode -> newNode, without deleting the changes in api server
// Should we use the Kubernetes serialization / deserialization libraries here?
oldNodeBytes, err := json.Marshal(oldNode)
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot marshal old node bytes")
}
newNodeBytes, err := json.Marshal(newNode)
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot marshal new node bytes")
}
apiServerNodeBytes, err := json.Marshal(apiServerNode)
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot marshal api server node")
}
schema, err := strategicpatch.NewPatchMetaFromStruct(&corev1.Node{})
if err != nil {
return nil, pkgerrors.Wrap(err, "Cannot get patch schema from node")
}
return strategicpatch.CreateThreeWayMergePatch(oldNodeBytes, newNodeBytes, apiServerNodeBytes, schema, true)
}
// updateNodeStatus triggers an update to the node status in Kubernetes.
// It first fetches the current node details and then sets the status according
// to the passed in node object.
//
// If you use this function, it is up to you to synchronize this with other operations.
// This reduces the time to second-level precision.
func updateNodeStatus(ctx context.Context, nodes v1.NodeInterface, nodeFromProvider *corev1.Node) (_ *corev1.Node, retErr error) {
ctx, span := trace.StartSpan(ctx, "UpdateNodeStatus")
defer func() {
span.End()
span.SetStatus(retErr)
}()
var updatedNode *corev1.Node
err := retry.RetryOnConflict(retry.DefaultRetry, func() error {
apiServerNode, err := nodes.Get(ctx, nodeFromProvider.Name, emptyGetOptions)
if err != nil {
return err
}
ctx = addNodeAttributes(ctx, span, apiServerNode)
log.G(ctx).Debug("got node from api server")
patchBytes, err := prepareThreewayPatchBytesForNodeStatus(nodeFromProvider, apiServerNode)
if err != nil {
return pkgerrors.Wrap(err, "Cannot generate patch")
}
log.G(ctx).WithError(err).WithField("patch", string(patchBytes)).Debug("Generated three way patch")
updatedNode, err = nodes.Patch(ctx, nodeFromProvider.Name, types.StrategicMergePatchType, patchBytes, metav1.PatchOptions{}, "status")
if err != nil {
// We cannot wrap this error because the kubernetes error module doesn't understand wrapping
log.G(ctx).WithField("patch", string(patchBytes)).WithError(err).Warn("Failed to patch node status")
return err
}
return nil
})
if err != nil {
return nil, err
}
log.G(ctx).WithField("node.resourceVersion", updatedNode.ResourceVersion).
WithField("node.Status.Conditions", updatedNode.Status.Conditions).
Debug("updated node status in api server")
return updatedNode, nil
}
// This will return a new lease. It will either update base lease (and the set the renewal time appropriately), or create a brand new lease
func newLease(ctx context.Context, base *coord.Lease, node *corev1.Node, leaseRenewalInterval time.Duration) *coord.Lease {
var lease *coord.Lease
if base == nil {
lease = &coord.Lease{}
} else {
lease = base.DeepCopy()
}
lease.Spec.RenewTime = &metav1.MicroTime{Time: time.Now()}
if lease.Spec.LeaseDurationSeconds == nil {
// This is 25 due to historical reasons. It was supposed to be * 5, but...reasons
d := int32(leaseRenewalInterval.Seconds()) * 25
lease.Spec.LeaseDurationSeconds = &d
}
if lease.Name == "" {
lease.Name = node.Name
}
if lease.Spec.HolderIdentity == nil {
// Let's do a copy here
name := node.Name
lease.Spec.HolderIdentity = &name
}
// Copied and pasted from: https://github.com/kubernetes/kubernetes/blob/442a69c3bdf6fe8e525b05887e57d89db1e2f3a5/pkg/kubelet/nodelease/controller.go#L213-L216
// Setting owner reference needs node's UID. Note that it is different from
// kubelet.nodeRef.UID. When lease is initially created, it is possible that
// the connection between master and node is not ready yet. So try to set
// owner reference every time when renewing the lease, until successful.
//
// We have a special case to deal with in the node may be deleted and
// come back with a different UID. In this case the lease object should
// be deleted due to a owner reference cascading deletion, and when we renew
// lease again updateNodeLease will call ensureLease, and establish a new
// lease with the right node ID
if l := len(lease.OwnerReferences); l == 0 {
lease.OwnerReferences = []metav1.OwnerReference{
{
APIVersion: corev1.SchemeGroupVersion.WithKind("Node").Version,
Kind: corev1.SchemeGroupVersion.WithKind("Node").Kind,
Name: node.Name,
UID: node.UID,
},
}
} else if l > 0 {
var foundThisNode, foundNode bool
for _, ref := range lease.OwnerReferences {
if ref.APIVersion == corev1.SchemeGroupVersion.WithKind("Node").Version && ref.Kind == corev1.SchemeGroupVersion.WithKind("Node").Kind {
foundNode = true
if node.UID == ref.UID && node.Name == ref.Name {
foundThisNode = true
}
}
}
if !foundThisNode && !foundNode {
log.G(ctx).Warn("Found that lease had owner references, but no nodes in owner references")
} else if foundNode {
log.G(ctx).Warn("Found that lease had owner references, but nodes in owner references that is not this node")
}
}
return lease
}
func updateNodeStatusHeartbeat(n *corev1.Node) {
now := metav1.NewTime(time.Now())
for i := range n.Status.Conditions {
n.Status.Conditions[i].LastHeartbeatTime = now
}
}
// NaiveNodeProvider is a basic node provider that only uses the passed in context
// on `Ping` to determine if the node is healthy.
type NaiveNodeProvider struct{}
// Ping just implements the NodeProvider interface.
// It returns the error from the passed in context only.
func (NaiveNodeProvider) Ping(ctx context.Context) error {
return ctx.Err()
}
// NotifyNodeStatus implements the NodeProvider interface.
//
// This NaiveNodeProvider does not support updating node status and so this
// function is a no-op.
func (NaiveNodeProvider) NotifyNodeStatus(ctx context.Context, f func(*corev1.Node)) {
}
type taintsStringer []corev1.Taint
func (t taintsStringer) String() string {
var s string
for _, taint := range t {
if s == "" {
s = taint.Key + "=" + taint.Value + ":" + string(taint.Effect)
} else {
s += ", " + taint.Key + "=" + taint.Value + ":" + string(taint.Effect)
}
}
return s
}
func addNodeAttributes(ctx context.Context, span trace.Span, n *corev1.Node) context.Context {
return span.WithFields(ctx, log.Fields{
"node.UID": string(n.UID),
"node.name": n.Name,
"node.cluster": n.ClusterName,
"node.taints": taintsStringer(n.Spec.Taints),
})
}
// Provides the simplest object metadata to match the previous object. Name, namespace, UID. It copies labels and
// annotations from the second object if defined. It exempts the patch metadata
func simplestObjectMetadata(baseObjectMeta, objectMetaWithLabelsAndAnnotations *metav1.ObjectMeta) metav1.ObjectMeta {
ret := metav1.ObjectMeta{
Namespace: baseObjectMeta.Namespace,
Name: baseObjectMeta.Name,
UID: baseObjectMeta.UID,
Annotations: make(map[string]string),
}
if objectMetaWithLabelsAndAnnotations != nil {
if objectMetaWithLabelsAndAnnotations.Labels != nil {
ret.Labels = objectMetaWithLabelsAndAnnotations.Labels
} else {
ret.Labels = make(map[string]string)
}
if objectMetaWithLabelsAndAnnotations.Annotations != nil {
// We want to copy over all annotations except the special embedded ones.
for key := range objectMetaWithLabelsAndAnnotations.Annotations {
if key == virtualKubeletLastNodeAppliedNodeStatus || key == virtualKubeletLastNodeAppliedObjectMeta {
continue
}
ret.Annotations[key] = objectMetaWithLabelsAndAnnotations.Annotations[key]
}
}
}
return ret
}