Files
virtual-kubelet/vendor/github.com/vishvananda/netlink/xfrm_state_linux.go
Loc Nguyen 513cebe7b7 VMware vSphere Integrated Containers provider (#206)
* Add Virtual Kubelet provider for VIC

Initial virtual kubelet provider for VMware VIC.  This provider currently
handles creating and starting of a pod VM via the VIC portlayer and persona
server.  Image store handling via the VIC persona server.  This provider
currently requires the feature/wolfpack branch of VIC.

* Added pod stop and delete.  Also added node capacity.

Added the ability to stop and delete pod VMs via VIC.  Also retrieve
node capacity information from the VCH.

* Cleanup and readme file

Some file clean up and added a Readme.md markdown file for the VIC
provider.

* Cleaned up errors, added function comments, moved operation code

1. Cleaned up error handling.  Set standard for creating errors.
2. Added method prototype comments for all interface functions.
3. Moved PodCreator, PodStarter, PodStopper, and PodDeleter to a new folder.

* Add mocking code and unit tests for podcache, podcreator, and podstarter

Used the unit test framework used in VIC to handle assertions in the provider's
unit test.  Mocking code generated using OSS project mockery, which is compatible
with the testify assertion framework.

* Vendored packages for the VIC provider

Requires feature/wolfpack branch of VIC and a few specific commit sha of
projects used within VIC.

* Implementation of POD Stopper and Deleter unit tests (#4)

* Updated files for initial PR
2018-06-04 15:41:32 -07:00

369 lines
10 KiB
Go

package netlink
import (
"fmt"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
)
func writeStateAlgo(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgo{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAuth{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgTruncLen: uint32(a.TruncateLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAEAD{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgICVLen: uint32(a.ICVLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeMark(m *XfrmMark) []byte {
mark := &nl.XfrmMark{
Value: m.Value,
Mask: m.Mask,
}
if mark.Mask == 0 {
mark.Mask = ^uint32(0)
}
return mark.Serialize()
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func XfrmStateAdd(state *XfrmState) error {
return pkgHandle.XfrmStateAdd(state)
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func (h *Handle) XfrmStateAdd(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func XfrmStateUpdate(state *XfrmState) error {
return pkgHandle.XfrmStateUpdate(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
}
func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
// A state with spi 0 can't be deleted so don't allow it to be set
if state.Spi == 0 {
return fmt.Errorf("Spi must be set when adding xfrm state.")
}
req := h.newNetlinkRequest(nlProto, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
limitsToLft(state.Limits, &msg.Lft)
req.AddData(msg)
if state.Auth != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth))
req.AddData(out)
}
if state.Crypt != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
req.AddData(out)
}
if state.Aead != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
req.AddData(out)
}
if state.Encap != nil {
encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
encap := nl.DeserializeXfrmEncapTmpl(encapData)
encap.EncapType = uint16(state.Encap.Type)
encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort))
encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort))
encap.EncapOa.FromIP(state.Encap.OriginalAddress)
out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
req.AddData(out)
}
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
return err
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func XfrmStateDel(state *XfrmState) error {
return pkgHandle.XfrmStateDel(state)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func (h *Handle) XfrmStateDel(state *XfrmState) error {
_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
return err
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip [-4|-6] xfrm state show`.
// The list can be filtered by ip family.
func XfrmStateList(family int) ([]XfrmState, error) {
return pkgHandle.XfrmStateList(family)
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip xfrm state show`.
// The list can be filtered by ip family.
func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, syscall.NLM_F_DUMP)
msgs, err := req.Execute(syscall.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
if err != nil {
return nil, err
}
var res []XfrmState
for _, m := range msgs {
if state, err := parseXfrmState(m, family); err == nil {
res = append(res, *state)
} else if err == familyError {
continue
} else {
return nil, err
}
}
return res, nil
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return pkgHandle.XfrmStateGet(state)
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
}
func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
req := h.newNetlinkRequest(nlProto, syscall.NLM_F_ACK)
msg := &nl.XfrmUsersaId{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Daddr.FromIP(state.Dst)
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.Src != nil {
out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
req.AddData(out)
}
resType := nl.XFRM_MSG_NEWSA
if nlProto == nl.XFRM_MSG_DELSA {
resType = 0
}
msgs, err := req.Execute(syscall.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELSA {
return nil, nil
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, nil
}
var familyError = fmt.Errorf("family error")
func parseXfrmState(m []byte, family int) (*XfrmState, error) {
msg := nl.DeserializeXfrmUsersaInfo(m)
// This is mainly for the state dump
if family != FAMILY_ALL && family != int(msg.Family) {
return nil, familyError
}
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
lftToLimits(&msg.Lft, &state.Limits)
attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ALG_AEAD:
state.Aead = new(XfrmStateAlgo)
algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
state.Aead.Name = nl.BytesToString(algo.AlgName[:])
state.Aead.Key = algo.AlgKey
state.Aead.ICVLen = int(algo.AlgICVLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
state.Mark = new(XfrmMark)
state.Mark.Value = mark.Value
state.Mark.Mask = mark.Mask
}
}
return &state, nil
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func XfrmStateFlush(proto Proto) error {
return pkgHandle.XfrmStateFlush(proto)
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func (h *Handle) XfrmStateFlush(proto Proto) error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, syscall.NLM_F_ACK)
req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
if err != nil {
return err
}
return nil
}
func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
if lmts.ByteSoft != 0 {
lft.SoftByteLimit = lmts.ByteSoft
} else {
lft.SoftByteLimit = nl.XFRM_INF
}
if lmts.ByteHard != 0 {
lft.HardByteLimit = lmts.ByteHard
} else {
lft.HardByteLimit = nl.XFRM_INF
}
if lmts.PacketSoft != 0 {
lft.SoftPacketLimit = lmts.PacketSoft
} else {
lft.SoftPacketLimit = nl.XFRM_INF
}
if lmts.PacketHard != 0 {
lft.HardPacketLimit = lmts.PacketHard
} else {
lft.HardPacketLimit = nl.XFRM_INF
}
lft.SoftAddExpiresSeconds = lmts.TimeSoft
lft.HardAddExpiresSeconds = lmts.TimeHard
lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
lft.HardUseExpiresSeconds = lmts.TimeUseHard
}
func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
}